Clinical trials for medical devices: FDA and the IDE process

Owen Faris, Ph.D.
Deputy Director
Division of Cardiovascular Devices
Office of Device Evaluation
Center for Devices and Radiological Health, FDA
The Section 201(h) of the Food, Drugs and Cosmetics Act defines a medical device as any healthcare product that does not achieve its principal intended purposes by chemical action or by being metabolized.

- As simple as a tongue depressor or a thermometer
- As complex robotic surgery devices
Device Classification

Medical Device Classes

- **Class I**
 - General Controls
 - Most exempt from premarket submission

- **Class II**
 - Special Controls
 - Premarket Notification [510(k)]

- **Class III**
 - Premarket Approval
 - Require Premarket Application [PMA]
510(k) Premarket Notification

- Substantial equivalence
- 10-15% require clinical data
- Performance testing
- Usually confirmatory
- Type of study dictated by:
 - Ability of bench and animal testing to answer questions
 - Amount of difference between subject device and predicate
PMA
Premarket Approval Application

• Establish reasonable assurance of safety and effectiveness
• Bench-Animal-Human
• Clinical Studies
 – Feasibility and pivotal
Stages of review for PMA device

Pre-Sub

Discuss:
- Device design
- Bench testing
- Animal testing
- Clinical trial

IDE

Request approval for clinical trial

PMA

Request market approval

PMA-S

Request approval for device change or upgrade (which may require a new IDE)
Today’s focus:

- Pre-IDE
 - Discuss: Device design, Bench testing, Animal testing, Clinical trial
- IDE
 - Request approval for clinical trial
- PMA
 - Request market approval
- PMA-S
 - Request approval for device change or upgrade (which may require a new IDE)
What is an Investigational Device Exemption (IDE)?

FDA approval of an IDE is required for US human study of a significant risk device which is not approved for the indication being studied.
Device trials are unique

- Trials tend to be smaller than drug trials
- Some novel, many “me-too”
- Many difficult to blind, randomize, control
- Many depend on physician technique
- Device modifications occur during trial
- Endpoints highly diverse
- Typically, single pivotal trial follows feasibility stage(s)
- Designed to support a “reasonable assurance of safety and effectiveness” for the marketing application
Types of IDEs

• Feasibility study
 – May provide support for a future pivotal study or may be used to answer basic research questions
 – Not intended to be the primary support for a marketing application
 – Endpoints and sample size generally not statistically driven
 – Often required by FDA prior to pivotal study to assess basic safety and potential for effectiveness
 – Generally ~10-40 patients but may be larger
 – FDA review is primarily focused on safety and whether the potential benefit or value of the data justifies risk
Types of IDEs

• Pivotal study
 – Generally intended as the primary clinical support for a marketing application
 – Designed to demonstrate a “reasonable assurance of safety and effectiveness”
 – Endpoints and sample size statistically driven
 – Designed to assess both safety and effectiveness
 – FDA review is much more complex
FDA’s Feasibility IDE Review

• Focused on safety
• Critical issues
 – Reasonable study conceptually?
 – Adequate preclinical validation of device?
 • Why is clinical really the next necessary step?
 – Appropriate mitigation of potential risks?
 – Appropriate enrollment criteria?
 – Patients adequately informed?
 – Sample size appropriate?
FDA’s Pivotal IDE Review

• Focused on safety and plan for collecting and evaluating study data

• Additional critical issues
 – Trial endpoints
 – Randomization, blinding, follow-up, etc
 – Study conduct and monitoring
 – Statistical analysis plan
Basic Submission Elements

• Background of medical issue, the study goals, and why this study will further the science
• Detailed description of the device under study
• Previous studies (preclinical and clinical)
 – Summary of available data
 – Why is a clinical study needed at this stage?
 – What evidence supports the safety of this study/device and the potential for the study data to be meaningful?
 – Are there outstanding safety questions that should be addressed with preclinical data?
Basic Submission Elements

- Risk analysis
 - What are the potential risks to the patient?
 - Does the study mitigate the risks where possible?
 - Are the risks outweighed by the potential for benefit and/or value of the study

- Patient monitoring and follow-up plan
- Inclusion and exclusion criteria
- Informed consent document
- Sample size and number of investigational centers, with justification
Submission Elements, Pivotal IDEs

• Primary and secondary endpoints
 – Discussion of appropriateness of endpoint parameters, hypotheses, and success criteria

• Basic trial design
 – Controlled? If not, why not?
 – Randomized? If not, why not?
 – Blinded? If not, why not?
Submission Elements, Pivotal IDEs

• Trial conduct and study monitoring
 – Data handling and adjudication process
 – Sponsor blinding
 – Independent committees
 – Case report forms
 • Is the right information being gathered to support the study endpoints and are investigators adequately prompted to report adverse events?
Submission Elements, Pivotal IDEs

• Statistical analysis plan
 – Clearly defined S & E hypotheses
 – Type-1 error and multiplicity
 – Missing data handling
 – Sample size calculations and assumptions
 – Assessment of critical covariates
 – Adaptive design plans
 – Interim analyses and early stopping rules
 – Data handling
Primary Endpoint Design

- Should evaluate the safety and effectiveness of the device in the population expected to be indicated.
- Generally divided into
 - 1 or more “safety” endpoints
 - 1 or more “effectiveness” endpoints
- A study would be considered successful if both the safety and effectiveness endpoints are met.
Primary Endpoint Design

• The clinical protocol should clearly and prospectively detail:
 – Methods for obtaining endpoint data
 – Definitions for what will be counted as a primary event in the analysis
 – Situations in which patient data will be excluded
 – How missing data will be handled
 – How the impact of covariates will be assessed
Sample Size & Follow-Up

• Driven by either:
 – Primary safety endpoint
 – Primary effectiveness endpoint

• Minimum number of patients and/or minimum duration of follow-up may be required depending on:
 – Understanding of the safety and effectiveness of the device
 – Concerns regarding durability of device safety or effectiveness
Secondary Endpoints

- Generally used to evaluate additional meaningful claims
- Generally only considered if primary endpoints are successful
- Should be used to provide further insight into the device effects and mechanisms of action
- Definitions and analysis methods should be clearly detailed prospectively
- Not considered "statistically significant" unless a pre-specified alpha allocation plan is in the protocol, even if the p-value is < 0.05
Submission Elements, Pivotal IDEs

Provide enough detail to avoid ambiguity once the trial has started.
FDA’s IDE Review Decisions

• Approval
 – Approves the trial for a specified number of patients and investigational centers

• Approval with Conditions
 – Allows sponsor to begin the trial if the sponsor agrees to address the conditions (deficiencies) from the conditional approval letter within 45 days

• Disapproval
 – Trial may not start until sponsor addresses the deficiencies from the letter, submits this information to FDA, and receives approval
FDA shall not disapprove an IDE because:

- the investigation may not support a substantial equivalence or de novo classification determination or approval of a device;
- the investigation may not meet a requirement, including a data requirement, relating to the approval or clearance of a device; or an additional or different investigation may be necessary to support clearance or approval of the device.
Recent Revision to FD&C Act

This means that an IDE cannot be disapproved on the basis of FDA’s belief that the study design is inadequate to support a future PMA, 510(k), HDE, or de novo classification.
Does study failure imply PMA disapproval?

- Often but not always.
- PMA approval is based on a Benefit-Risk assessment
- FDA is always willing to review all available data to determine whether there is a reasonable assurance that the device safe and effective.
Does study failure imply device disapproval?

• **Alternatives**
 - Unexpected safety concerns are outweighed by stronger than expected benefit
 - Inconclusive study result is supplemented by other clinical or non-clinical data
 - Device is safe and effective for some limited indication or patient population
 - All of these alternatives may raise serious type-1 error concerns. FDA is therefore very conservative in its consideration of these alternatives.
Does study success imply device approval?

- Often but not always
- Sometimes the primary endpoints do not capture a serious unexpected safety concern that is observed in the trial.
- Other clinical or non-clinical data may conflict with the study result.
- Can result in:
 - Device disapproval
 - Requirement for more data
 - Limited indication
Some Generic Case Examples
Cardiovascular Devices

- LVADs
- Pacemakers, ICDs, leads
- Cardiac resynchronization therapy
- Ablation catheters and generators
- Cardiac monitoring devices
- Heart valves
- Stents
- Cardiac occluders
Example 1: Novel heart failure device study

• Novel implantable stimulation device to treat heart failure

• Key characteristics
 – Implant has serious risks
 – Device is programmable
 – Benefit may be symptomatic/functional
 – Patients can feel the stimulation

• Previous data
 – Feasibility data promising but single-arm
Study Considerations

• Safety
 – Require long-term follow-up
 – Safety success criteria should be rigorous to balance symptomatic benefit

• Effectiveness
 – Must be randomized to assess benefit
 – Symptomatic/functional benefit requires blinding
 – But how does one blind this study?
Company Proposal

- Implant device in all subjects
- Randomize to on vs. sham stimulation
- 6-month follow-up, after which device may be turned on or off in any subject
- Safety: all subjects pooled, compared to objective performance criterion (OPC)
- Effectiveness: Responder’s analysis of quality of life (QOL) and six minute walk distance
Problems with this plan

• 6-month follow-up
 – What if effect is short-lived?
 – What if long-term safety concerns arise?

• Sham stimulation
 – Is there enough data to know how to design true sham?
 – Will blinding truly be maintained?
Problems with this plan

- **Safety**
 - Endpoint evaluates only procedure and presence of the device, not effect of the therapy

- **Effectiveness**
 - 6MW and QOL highly placebo sensitive
 - Even if demonstrated, will benefit in these endpoints result in appropriate risk-benefit?
FDA’s advice

• 12 month follow-up
• Multiple, rigorous safety endpoints
• If sham, more data needed to support blinding
• More objective effectiveness endpoints
 – Mortality/hospitalization composite
 – VO2 max or ventilatory threshold
• Show reasonable risk-benefit profile
Example 2: MRI Conditional Pacemaker

- Concerns
 - Proper device function
 - Thermal or arrhythmogenic injury from MRI
- Design: Device implanted in all subjects, randomization to MRI or No-MRI.
- Safety/Effectiveness
 - MRI Adverse events
 - Pacing parameter changes (indicative of injury)
- Additional restrictions
 - At least 200 subjects to receive MRI
Example 2: MRI Conditional Pacemaker

• Limitations
 – Study not designed to assess basic device performance
 – Study not powered to detect low rate (but meaningful) safety issues
 – Clinical study considered confirmatory to comprehensive preclinical data

• Review focus
 – Trial design important, but...
 – Preclinical issues present the larger obstacle before FDA would allow proceeding to clinical
Example 3: Heart Valve

- **Design:** single-arm
- **Effectiveness**
 - Stenosis, leakage, and orifice area
 - Compared to normal published values
- **Safety**
 - 30-day and intermediate (1-year) complication rate
 - Compared to OPC
- **Additional restrictions**
 - 800 patient-years
 - At least 300 patients for at least 1 year
Conclusions

• One size does not fit all for device trials
• Pivotal studies should be designed to evaluate whether there is a “reasonable assurance of safety and effectiveness.”
• PMA approvability is based upon a Benefit-Risk assessment which strongly considers outcome of primary safety and effectiveness endpoints.
Conclusions

• Secondary endpoints are generally used to support claims if the primary endpoints are successful.

• All endpoint analyses and definitions should be clearly pre-specified in the approved clinical protocol.

• Trial design is challenging. We recommend talking to FDA early through the pre-submission process.
Online Resources

• CDRH Learn – Online Regulatory Training Tool
 – Over 50 Medical device and Radiological Health modules
 – Video and PowerPoint presentations available 24/7
 – Certificate of completion upon passing post-tests
 – Many modules are translated into Chinese and Spanish
 – http://www.fda.gov/Training/CDRHLearn/

• Device Advice – Online Regulatory Information
 – Searchable by topic
 – http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/

• Division of Small Manufacturers, International, and Consumer Assistance (DSMICA) – Live Regulatory Assistance
 – Technical Assistance for the Medical Device Industry
 – Available 8:00 am – 5:00 pm EST
 – 800-638-2041 or 301-796-7100
 – DSMICA@fda.hhs.gov